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Animal behaviour 

Exposure to parasites increases 
promiscuity in a freshwater snail 

D. M. Soper† , K. C. King‡ , D. Vergara} and C. M. Lively 

Department of Biology, Indiana University, Bloomington, IN, USA 

Under the Red Queen hypothesis, outcrossing can produce genetically variable 
progeny, which may be more resistant, on average, to locally adapted parasi-

tes. Mating with multiple partners may enhance this resistance by further 
increasing the genetic variation among offspring. We exposed Potamopyrgus 
antipodarum to the eggs of a sterilizing, trematode parasite and tested whether 
this altered mating behaviour. We found that exposure to parasites increa-

sed the number of snail mating pairs and the total number of different 
mating partners for both males and females. Thus, our results suggest that, 
in host populations under parasite-mediated selection, exposure to infective 
propagules increases the rate of mating and the number of mates. 
1. Introduction 
Infectious diseases are ubiquitous and often substantially reduce host fitness [1]. 
According to the Red Queen hypothesis, selection imposed by virulent, coevol-

ving parasites can select for sexual reproduction over asexual reproduction, 
because of the diversifying genetic effects that recombination and outcrossing 
have on offspring [2–4]. The genetic diversity of offspring may be further 
increased if females choose dissimilar mates [5–7] or mate with multiple males 
[8–10]. Multiple mating, in particular, has been shown to generate higher geno-

typic diversity among offspring than sex and recombination alone [11]. Here, 
we test the hypothesis that exposure to parasites increases multiple mating in a 
freshwater snail. 

We exposed the New Zealand freshwater snail, Potamopyrgus antipodarum, to  
the infective eggs of its sterilizing, trematode parasite Microphallus sp. ‘livelyi’ 
[12]. Previous studies on this host–parasite system have revealed parasite-mediated 
selection against common host genotypes, as well as strong local adaptation by the 
parasite [13,14]. We have also found direct evidence for multiple paternity in natu-

ral populations of P. antipodarum [15]. The goal for this study was to determine 
whether sexual females of this snail could be induced by exposure to parasites to 
increase their rate of mating and the number of partners. 
2. Material and methods 
Potamopyrgus antipodarum is a freshwater snail commonly found in lakes and streams 
throughout New Zealand. Individual snails are either triploid parthenogenetic females 
or diploid dioecious sexuals [16]. Populations can be mixed, having both clonal and 
sexual individuals, or they can comprise only of clonal individuals [17,18]. 

This snail species is the first intermediate host for several species of digenetic tre-

matodes, of which Microphallus sp. ‘livelyi’ is the most common parasite in lake 
populations [12,19,20]. This parasite produces encysted larvae (i.e. metacercariae) in 
the snail host after about three months under laboratory conditions, and the snails 
are sterilized from infection. The parasite develops into a hermaphroditic adult 
stage after ingestion by the definitive host (ducks and wading birds) and produces 
eggs within several days. These eggs are then passed into the environment with 
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Table 1. Linear mixed models of the effect of parasite and bacterial exposure on the number of snail mating pairs and the number of male partners/female. 

no. mating pairs no. male partners/female 

d.f. F p d.f. F p 

intercept 1, 5 784.816 ,0.001 1, 404 490.563 ,0.001 

parasites 1, 224 38.944 ,0.001 1, 404 19.179 ,0.001 

bacteria 1, 224 0.152 0.945 1, 404 0.003 0.960 

parasites  bacteria 1, 224 2.093 0.072 1, 404 1.713 0.191 

day 9, 224 7.959 ,0.001 
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faeces of infected birds. Previous studies have shown that the 
snails can become infected after exposing them to Microphallus 
eggs collected from the faeces of ducks and wading birds [21,22]. 

We examined whether exposure to field-collected Microphallus 
eggs increased the number of mating pairs formed and the number 
of mating partners per individual P. antipodarum. We isolated male 
and female snails from an outbred, sexual lineage that was des-

cended from snails originally collected from Lake Alexandrina 
(South Island, New Zealand) and then maintained in the labora-

tory for over five years. For each of 24 experimental units, 
17 male and 17 female snails larger than 2.5 mm (adult size) 
were individually painted with a unique colour of nail polish, 
and then placed in a container with 1 l water. One of four possible 
duck-faeces inocula were then added to each experimental unit, 
with six replicates per treatment: (i) 1 ml duck faeces (collected 
from Lake Alexandrina; containing approximately 616 Microphal-
lus eggs/snail and naturally occurring bacteria (‘natural’ 
treatment), (ii) 1 ml autoclaved (sterilized) duck faeces (‘sterile’ 
treatment), (iii) 1 ml autoclaved duck faeces to which bacteria-

laden (but trematode-free) water from the duck faeces was 
added after autoclaving (‘bacteria’ treatment), (iv) 1 ml of 
‘bleached’ duck faeces prepared using a ‘bleaching protocol’ that 
removes bacteria, but does not kill worm eggs (‘parasite’ treat-

ment) [23]. Treatments (ii)–(iv) were designed to control for the 
possibility that snails were responding to exposure to bacteria 
and/or to duck faeces per se, rather than to Microphallus. 

Twenty-four hours following exposure, we counted the 
number of mating pairs and recorded the identity of each 
mating individual in each replicate container three times per 
day (10.00, 13.00 and 16.00) over each of 10 days. 

(a) Statistical analysis 
IBM SPSS Statistics v. 20.0 (NY, USA) was used for all analyses. 
We used linear mixed models to examine how the treatments 
affected the number of mating pairs formed and the number 
of mating partners per female and per male. ‘Parasites’ and 
‘bacteria’ were analysed as separate crossed fixed factors. Day 
of exposure was a separate fixed factor, and replicate was a 
random factor. Owing to the large sample sizes used in the 
experiment, our tests were robust to the moderately skewed dis-

tribution of the residuals [24]. Parameters were estimated using 
restricted maximum likelihood, and the significance of the 
fixed factors was determined using type III F-tests. We used 
Dunnett’s post hoc tests to determine whether the number of 
mating pairs formed and the number of partners in exposure 
treatments differed from control treatments. 
3. Results 
Exposure to parasites increased the number of mating pairs 
formed and the number of different partners in those 
pairs (table 1, and figures 1 and 2). The effect on mating pairs 
was only present in the two exposure treatments with parasites, 
and not in the bacterial treatment or control (figure 1 inset; 
Dunnett’s test: natural p , 0.001, parasite p ¼ 0.013). Day of 
exposure also affected the number of mating pairs observed 
among treatments (table 1), with the most mating pairs counted 
on the first day (figure 1). While all male snails mated at least 
once, some females were never observed in a mating pair. 
When compared with the control, higher numbers of mating 
partners per female were detected in both the parasite treatments 
(Dunnett’s test: natural p ¼ 0.003, parasite-only p ¼ 0.036). 
Similarly, there were significantly more mating partners per 
male found in the natural duck faeces treatment ( p ¼ 0.017) rela-

tive to the control, but only marginally more partners in the 
parasite-only treatment ( p ¼ 0.107). Finally, no difference was 
detected in the number of female mating partners between the 
bacteria-only treatment and the control ( p ¼ 0.977). 
4. Discussion 
Under the Red Queen Hypothesis, outcrossing can produce 
genetically variable progeny, which may be more resistant 
than asexually produced progeny, on average, to coevolving 
parasites [2–4,13,25]. Moreover, the number and choice of 
mates in the population may enhance this resistance by further 
increasing genetic variation among offspring [23]. In natural 
populations of P. antipodarum with high frequencies of infec-

tion, the snails produce broods with multiple sires [15], and 
here, we show that parasite exposure alone can increase the 
mating rate and number of different mating partners, which 
could account for multiple paternity. Taken together, these 
results suggest that parasite-mediated selection can favour 
the diversification of broods via multiple paternity. 

Presently, we can only speculate on the underlying mech-

anisms of these behavioural changes following parasite 
exposure. In other systems, host behaviour is altered by para-

site-secreted chemicals, parasite-mediated manipulation of 
the central nervous system or encystation within neurological 
or muscular tissues [26]. However, these behavioural modifi-

cations have typically been observed when infections have 
developed. We found that exposure, not necessarily infection 
(which takes at least three months to develop to a trans-

missible stage), affects the short-term sexual behaviour of 
P. antipodarum. The increase in polyandry that we observed 
may act to increase the number of sires (and thus genetic 
diversity) within the brood, but may additionally increase 
the genetic quality of offspring by generating sperm compe-

tition and an opportunity for cryptic female choice [27]. In 
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Figure 1. Number of mating pairs observed during parasite exposure (+1 s.e.). Number of mating pairs counted per day over the 10 days of exposure in the 
control (diamonds) and treatments: natural inoculum (circles), parasite inoculum (triangles) and bacteria inoculum (squares). The inset figure shows the mean 
number of mating pairs averaged across the 10-day exposure period. Asterisks indicate significant p-values ( p , 0.05) for post hoc Dunnett’s tests comparing 
exposure treatments with the control. 
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Figure 2. Mean number (+1 s.e.) of mating partners per female in the 
control (sterile) and three exposure treatments. Asterisks indicate significant 
p-values ( p , 0.05) for post hoc Dunnett’s tests comparing exposure 
treatments with the control. 
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this way, increased polyandry in response to parasite 
exposure may directly increase offspring survival [28] if the 
offspring are less likely to become infected. 
In summary, we found that exposure to parasites drives 
up the number of mating partners and mating pairs for-

med in snail populations. These results are consistent with 
previous studies suggesting that natural populations of this 
snail are under parasite-mediated selection for sexual repro-

duction, favouring high genetic diversity [13,21]. Beyond 
sex and recombination, multiple mating could further 
increase genetic diversity for resistance among offspring. 
Thus, the changes in sexual behaviour we observed might 
be important for countering the constant risk of infection by 
parasites in nature. Future studies may benefit from investi-

gating how other environmental factors influence mating 
behaviour and the genetic diversity of offspring production 
after parasite exposure. 
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